Search results

Search for "Kirkendall effect" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • metal/silver oxide interface. Based on the scanning transmission electron microscopy analysis coupled with energy dispersive X-ray mapping a mechanism was proposed based on solid-state diffusion and the Kirkendall effect to explain the different steps occurring during the oxidation process. Keywords
  • film can be explained by the Kirkendall effect [24]. More precisely, as silver diffuses out of the alloy film, vacancies are injected into the metal/oxide interface and migrate within the fast-diffusing medium (represented here by the metal alloy in Figure 8c). As the oxidation process evolves
  • oxygen, solid-state diffusion in metal alloys as well as the Kirkendall effect. The nanoporous microspheres generated by the silver oxidation within the Au/Ag alloy film might have potential applications to the field of gas sensors and catalysis since those require nanoporous semiconductor materials with
PDF
Album
Full Research Paper
Published 22 Oct 2020

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • the nanoscale Kirkendall effect as shown in Figure 1a, which arises from the difference in diffusion rates between the anions and cations [35][40]. We applied rapid thermal oxidation to sputtered Co nanoparticles in air at 500 °C for 10 min to convert them into Co3O4 [20]. Co films of varying
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Hydration of magnesia cubes: a helium ion microscopy study

  • Ruth Schwaiger,
  • Johannes Schneider,
  • Gilles R. Bourret and
  • Oliver Diwald

Beilstein J. Nanotechnol. 2016, 7, 302–309, doi:10.3762/bjnano.7.28

Graphical Abstract
  • measurement, see the Experimental section). In the case of a complete transformation of MgO cubes into Mg(OH)2 cubes, a similar volume increase factor, i.e., 1.52, would be expected. The high value of the volume expansion measured is attributed to the Kirkendall effect, which has been observed many times in
  • substrate for imaging. Depending on their size the MgO-based cubes [21] become subject to significant volume expansion effects (up to a factor of 2.5) that are attributed to oxide transformation into hydroxides and the generation MgO/Mg(OH)2 core–shell structures as a result of the Kirkendall effect. These
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2016

Atomic scale interface design and characterisation

  • Carla Bittencourt,
  • Chris Ewels and
  • Arkady V. Krasheninnikov

Beilstein J. Nanotechnol. 2015, 6, 1708–1711, doi:10.3762/bjnano.6.174

Graphical Abstract
  • refined, for example new understandings of diffusion processes during growth and oxidation allow for the engineering of hollow nanostructures using the Kirkendall effect [10], the filling of carbon nanotubes and nanofibers to tune their properties [11], or the use of electron irradiation to produce carbon
PDF
Editorial
Published 10 Aug 2015

Formation of substrate-based gold nanocage chains through dealloying with nitric acid

  • Ziren Yan,
  • Ying Wu and
  • Junwei Di

Beilstein J. Nanotechnol. 2015, 6, 1362–1368, doi:10.3762/bjnano.6.140

Graphical Abstract
  • -enhanced Raman scattering (SERS), imaging [9], and catalysis [10][11]. Up to now, several methods, such as template-based methods, Kirkendall effect, Ostward ripening, and galvanic replacement, have been developed to synthesize hollow metal nanostructures [12][13][14]. Among them, the galvanic replacement
PDF
Album
Full Research Paper
Published 18 Jun 2015

The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes

  • Abdel-Aziz El Mel,
  • Ryusuke Nakamura and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 1348–1361, doi:10.3762/bjnano.6.139

Graphical Abstract
  • applications in various modern technological areas including energy storage devices, catalyst, optics and sensors. The last years have witnessed increasing interest in the Kirkendall effect as a versatile route to fabricate hollow nanostructures with different shapes, compositions and functionalities. Although
  • the conversion chemistry of nanostructures from solid to hollow has reached a very advanced maturity, there is still much to be discovered and learned on this effect. Here, the recent progress on the use of the Kirkendall effect to synthesize hollow nanospheres and nanotubes is reviewed with a special
  • emphasis on the fundamental mechanisms occurring during such a conversion process. The discussion includes the oxidation of metal nanostructures (i.e., nanospheres and nanowires), which is an important process involving the Kirkendall effect. For nanospheres, the symmetrical and the asymmetrical mechanisms
PDF
Album
Review
Published 18 Jun 2015
Other Beilstein-Institut Open Science Activities